Posts Tagged The Echo Nest

testing one of the new APIs

nest% least_energy the beatles
0.08 Julia
0.09 Yesterday
0.11  Golden Slumbers
0.11 Blackbird  / Yesterday

nest% least_danceable the beatles
0.02 Revolution 9
0.07 Within You Without You _ Tomorrow Never Knows
0.07  Because

nest% most_energy led zeppelin
0.98 Moby Dick — Bonzo’s Montreux
0.98 Bonzo’s Montreux
0.95 Walter’s Walk
0.95 D’yer Mak’er

nest% most_danceable led zeppelin
0.73 Black Country Woman
0.64 Boogie With Stu
0.63 All My Love
0.63 The Rover

, , , ,

2 Comments

The Name Dropper

[tweetmeme source= ‘plamere’ only_single=false]

TL;DR;  I built a game called Name Dropper that tests your knowledge of music artists.

One bit of data that we provide via our web APIs is Artist Familiarity.  This is a number between 0 and 1 that indicates how likely it is that someone has heard of that artists.    There’s no absolute right answer of course – who can really tell if Lady Gaga is more well known than Barbara Streisand or  whether Elvis is more well known than Madonna. But we can certainly say that The Beatles are more well known, in general, than Justin Bieber.

To make sure our familiarity scores are good, we have a Q/A process where a person knowledgeable in music ranks our familiarity score by scanning through a list of artists ordered in descending familiarity until they start finding artists that they don’t recognize.  The further they get into the list, the better the list is.  We can use this scoring technique to rank multiple different familiarity algorithms quickly and accurately.

One thing I noticed, is that not only could we tell how good our familiarity score was with this technique, this also gives a good indication of how well the tester  knows music.  The further a tester gets into a list before they can’t recognize artists, the more they tend to know about music.   This insight led me to create a new game:  The Name Dropper.

The Name Dropper is a simple game.  You are presented with a list of dozen artist names.  One name is a fake, the rest are real.

If you find the fake, you go onto the next round, but if you get fooled, the game is over.    At first, it is pretty easy to spot the fakes, but each round gets a little harder,  and sooner or later you’ll reach the point where you are not sure, and you’ll have to guess.  I think a person’s score is fairly representative of how broad their knowledge of music artists are.

The biggest technical challenge in building the application was coming up with a credible fake artist name generator.  I could have used Brian’s list of fake names – but it was more fun trying to build one myself.  I think it works pretty well.  I really can’t share how it works since that could give folks a hint as to what a fake name might look like and skew scores (I’m sure it helps boost my own scores by a few points).  The really nifty thing about this game is it is a game-with-a-purpose.  With this game I can collect all sorts of data about artist familiarity and use the data to help improve our algorithms.

So go ahead, give the Name Dropper a try and see if you can push me out of the top spot on the leaderboard:

Play the Name Dropper


, , , , ,

6 Comments

Amsterdam Music Hack Day

The Amsterdam Music Hack Day is underway.  The Echo Nest is participating but due to some problems with actually getting there, we are participating virtually.    We needed someone to physically give our API presentation – Matt Ogle of Last.fm graciously offered to give it – so around 5AM this morning I had the surreal experience of watching via a  streaming webcam, employee #1 of Last.fm don an Echo Nest tee-shirt and talk about the Echo Nest APIs.  Surreal especially since many of our APIs overlap with Last.fm’s wonderful APIs – its kind of like seeing a Mercedes car salesman helping BMW meet their sales quota.  So many thanks to Matt – he’s a totally classy guy. He did such a great job that people tweeted that they thought the Echo Nest API presentation was one of their favorites of the music hack day.

Matt Ogle wearing an Echo Nest shirt presenting the Echo Nest API (photo by frenkie)

We are releasing a bunch of new stuff this weekend. So much stuff, in fact that it is hard to write about it all in one post, so I shall be posting in small doses.  Here’s what’s new from the Echo Nest:

So what is a Music Hack Day all about?  It’s the hacking!  This video gives you a taste:

,

2 Comments

The Echo Nest Song API

This weekend at the Amsterdam Music Hack day we are releasing lots of new stuff. First of all, we opening up beta access to the next version of our APIs.  This version is an all new architecture – that I’m rather excited about. Some new features:
  • Performance – api method calls run faster – on average API methods are running 3X faster than the older version.
  • JSON Output – all of our methods now support JSON output in addition to XML.  This greatly simplifies writing client libraries for the Echo Nest
  • Nimble coding – with the new architecture it will be much easier for us to roll out new features – so expect to see new features added to the Echo Nest platform every month
  • No cruft – we are revisiting our APIs to try to eliminate inconsistencies, redundancies and unnecessary features to make them as clean as we can.

The beta version of our next generation APIs are here:  http://beta.developer.echonest.com/

The first significant new API we are adding is the Song API – this gives you all sorts of ways to search for and retrieve song level data.  With the song API you can do the following:

  • search for songs via  artist name, song title, and description. You can affect the results with constraints and sorts:
    • constrain the results by a number of factors including musical attributes like tempo, loudness, time signature and key, artist hotttnesss, location
    • sort – the results by any of the attributes
  • Find similar songs – find similar songs to  a seed song
  • Find profile – get all sorts of info about a song including audio, audio summary info, track data for different catalogs, song hottttnesss, artist_hotttnesss, artist_location, and detailed track analysis
  • Identify songs – works in conjunction with the ENMFP

There are lots of things you can do with this API. Here’s just a quick sample of the types of queries you can make:

Find the loudest thrash songs

song/search?sort=loudness-desc&description=thrash

Find indie songs for jogging

song/search?min_tempo=120&description=indie&max_tempo=125

Fetch the tempo of Hey Jude

search?title=hey+jude&bucket=audio_summary&artist=the+beatles

Fetch the track audio and analysis of Bad Romance

search?title=bad+romance&bucket=tracks&bucket=id:paulify&artist=lady+gaga

Find songs similar to Bad Romance

song/similar?id=SOAOBBG127D9789749

We have two clients that support the new beta version of the API:
  • jen-api – a java client
  • beta_pyechonest – a new branch of the venerable pyechonest library. Grab it from SVN with
svn checkout http://pyechonest.googlecode.com/svn/branches/ beta-pyechonest-read-only

I’ll be writing more about all of the new APIs real soon.   Access the beta Echo Nest APIs here:

http://beta.developer.echonest.com/

, , ,

2 Comments

Lady Gaga meets Edward Tufte

In his spare time, Echo Nest developer Reid Draper built hotttnesss.com – a neat web app that shows the top 50 hotttest artists (according to the Echo Nest get_top_hottt_artists) along with sparklines showing the historical hotttnesss for the last week. Reid used the nifty jquery sparklines plugin to make it happen. Mouse over an artist name to get links to the Last.fm and Spotify pages for the artist so you can find out what the big deal is about Broken Bells or lyaz.

,

Leave a comment

22 students + 10 days + Echo Nest == Awesome!

The students in Mark Chang‘s mobile development course at Olin college  just completed the mid-semester #mobdev contest. This was a 10-day sprint to create a compelling product prototype on the Android platform that used the Echo Nest APIs. Teams were judged on the business model,  design, and implementation of their prototype. As Mark puts it: Substance, Style and a convincing way to make money.

Beat Counter

In 10 days, these students built 7 awesome apps – each with a solid business model behind it.  Here’s a summary:

  • Beat Counter –  A music listening application made especially for choreographers.
  • Music Trails –  An application that helps listeners freely explore new music by visually navigating a web of connected artists.
  • DJMixr – An application that lets people collectively play music. This is the winning app!
  • BeatBlocker – a synchronized music game for the casual gaming market
  • PacePlayer – an application for casual runners that enjoy listening to music
  • Bandroid – An application for finding local concerts
  • Driving Beat – an application that was so awesome that it is now a state secret.

I hope to see all of these apps in the Android marketplace very soon. Special thanks to Debcha for connecting The Echo Nest with mobdev

, ,

1 Comment

Bad Romance – the memento edition

At SXSW I  gave a talk about how computers can help make remixing music easier.  For the talk I created a few fun remixes.  Here’s one of my favorites.  It’s  a beat-reversed version of Lady Gaga’s Bad Romance.   The code to create it is here: vreverse.py

, ,

2 Comments

Unofficial Artist Guide to SXSW

I’m excited! Next week I travel to Austin for a week long computer+music geek-fest at SXSW.  A big part of SXSW is the music – there are nearly 2,000 different artists playing at SXSW this year. But that presents a problem – there are so many bands going to SXSW (many I’ve never heard of) that I find it very hard to figure out which bands I should go and see.  I need a tool to help me find sift through all of the artists – a tool that will help me decide which artists I should add to my schedule and which ones I should skip.   I’m not the only one who was daunted by the large artist list.  Taylor McKnight, founder of SCHED*, was thinking the same thing.  He wanted to give his users a better way to plan their time at SXSW.  And so over a couple of weekends Taylor built (with a little backend support from us)  The Unofficial Artist Discovery Guide to SXSW.

The Unofficial Artist Discovery Guide to SXSW is a tool that allows you to explore the many artists attending this year’s SXSW.  It lets you search for artists,  browse popularity, music style, ‘buzzworthiness’,  or similarity to your favorite artists – and it will make recommendations for you based on your music taste (using your Last.fm, Sched* or Hype Machine accounts) .  The Artist Guide supplies enough context (bios, images, music, tag clouds, links) to help you decide if you might like an artist.

Here’s the guide:

Here’s a quick tour of some of the things you can do with the guide.  First off, you can Search for artists by name, genre/tag or location. This helps you find music when you know what you are looking for.

However, you may not always be sure what you are looking for – that’s where you use Discover. This gives you recommendations based on the music you already like.  Type in the name of a few artists (even artists that are not playing at SXSW) or your SCHED*, Hype Machine or Last.fm user name, and ‘Discover’ will give you a set of recommendations for SXSW artists based on your music taste.  For example, I’ve been listening to Charlotte Gainsbourg lately so I can use the artist guide to help me find SXSW artists that I might like:

If I see an artist that looks interesting I can drill down and get more info about the artist:

From here I can read the artist bio, listen to some audio, explore other similar SXSW artists or add the event to my SCHED* schedule.

I use Last.fm quite a bit, so I can enter my Last.fm name and get SXSW recommendations based upon my Last.fm top artists. The artist guide tries to mix things up a little bit so if I don’t like the recommendations I see, I can just ask again and I can get a different set. Here are some recommendations based on my recent listening at Last.fm:

If you’ve been using the wonderful SCHED* to keep track of your SXSW calendar you can use the guide to get recommendations based on artists that you’ve already added to your SXSW calendar.

In addition to search and discovery, the guide gives you a number of different ways to browse the SXSW Artist space.  You can browse by ‘buzzworthy’ artists – these are artists that are getting the most buzz on the web:

Or the most well-known artists:

You can browse by the style of music via a tag cloud:

And by venue:

Building the guide was pretty straightforward. Taylor used the Echo Nest APIs to get the detailed artist data such as familiarity, popularity, artist bios, links, images, tags and audio. The only data that was not available at the Echo Nest was the venue and schedule info which was  provided by Arkadiy (one of Taylor’s colleagues).  Even though SXSW artists can be extremely long tail (some don’t even have Myspace pages),  the Echo Nest was able to provide really good coverage for these sets (There was coverage for over 95% of the artists).     Still there are a few gaps and I suspect there may be a few errors in the data (my favorite wrong image is for the band Abe Vigoda).   If you are in a band that is going to SXSW and you see that we have some of your info wrong, send me an email (paul@echonest.com) and I’ll make it right.

We are excited to see the this Artist Discovery guide built on top of the Echo Nest.  It’s a great showcase for the Echo Nest developer platform and working with Taylor was great.  He’s one of these hyper-creative, energetic types – smart, gets things done and full of new ideas.   Taylor may be adding  a few more features to the guide before SXSW, so stay tuned and we’ll keep you posted on new developments.

, , , , , ,

2 Comments

Here comes the antiphon

I’m gearing up for the SXSW panel on remix I’m giving in a couple of weeks.  I thought I should veer away from ‘science experiments’ and try to create some remixes that sound musical.  Here’s one where I’ve used remix to apply a little bit of a pre-echo to ‘Here Comes the Sun’.  It gives it a little bit of a call and answer feel:

The core (choir?) code is thus:

for bar in enumerate(self.bar):
 cur_data  = self.input[bar]
 if last:
     last_data = self.input[last]
     mixed_data = audio.mix(cur_data, last_data, mix=.3)
     out.append(mixed_data)
 else:
    out.append(cur_data)
 last = bar

, , , ,

Leave a comment

Python and Music at PyCon 2010

If you are lucky enough to be heading to PyCon this week and are interested in hacking on music,  there are two talks that you should check out:

DJing in Python: Audio processing fundamentals – In this talk Ed Abrams talks about how his experiences in building a real-time audio mixing application in Python.  I caught a dry-run of this talk at the local Python SIG – lots of info packed into this 30 minute talk.   One of the big takeaways from this talk is the results of Ed’s evaluation of a number of Pythonic audio processing libraries. Sunday 01:15pm, Centennial I

Remixing Music Pythonically – This is a talk by Echo Nest friend and über-developer Adam Lindsay.  In this talk Adam talks about the Echo Nest remix library.   Adam, a frequent contributor to remix, will offer details on the concise expressiveness offered when editing multimedia driven by content-based features, and some insights on what Pythonic magic did and didn’t work in the development of the modules. Audio and video examples of the fun-yet-odd outputs that are possible will be shown. Sunday 01:55pm, Centennial I

The schedulers at PyCon have done a really cool thing and have put the talks back to back in the same room.   Also, keep your eye out for  the Hacking on Music OpenSpace

, ,

Leave a comment