The Set Listener

Going to a show? Not totally familiar with an artist’s catalog? Give The Set Listener a try.  The Set Listener is a web app that will create a Spotify playlist of an artist’s most recent show.

 

The_Set_Listener

 

To use The Set Listener just type in the artist name, and hit the search button, you’ll be presented with a playlist of songs from that artist’s most recent show.  Hit the ‘Save this playlist to Spotify’ button and you’ll have a Spotify playlist that you can listen to on your desktop or on your mobile phone.

The app relies on the SetList.fm API and the brand new and super spiffy Spotify Web API. Now that the Spotify Web API supports the creation and saving of playlists creating these types of apps is quite straightforward – just a few hours of coding. This was my first time using the SetList.fm API – its a super resource for setlists from concerts by thousands of artists.

Check out the app online at The Set Listener.  The code is online on github.

2 Comments

My new superpower – creating Spotify playlists from a web app

labs_echonest_com_CityServer_callback_html_access_token_BQBcbPg0FicOcTQ2Epc5XxGkMNuQPU4LA-ou9LP0lo7qx-4FNd7QlJNXtXziRF04gPtbATfmh9Xe25vJeUVrOQLOrhpQi4La3jT6dEUc7XHD_7iB9oStWBN9PuNGoWB_WKg8goz92CQpYHVM50z_wjY_token_type_Bearer_expires_in_360The new Spotify Web API allows the developer to create and add tracks to a playlist on behalf of a listener. This is a pretty powerful feature, opening the door for a whole range of apps. For instance, this weekend, I added the ability to save a Roadtrip Mixtape playlist, so you can now actually take your mixtapes on the road.   The code is on github if  you are interested in seeing how it is done.

 

, , ,

9 Comments

The Echo Nest + Spotify Sandbox

I am wearing my International Executive Music Hacker hat today. I’m writing this blog post at 5AM somewhere over the Atlantic Ocean, on my way to the Barcelona Music Hack Day, where I’ll be representing both The Echo Nest and Spotify. I’m pretty excited about the hack event – first, because it’s in freaking Barcelona, and second, because I get to talk about what’s been going on with the Spotify and Echo Nest APIs.

The_Echo_Nest___Spotify_Developer

It has been just about 100 days since The Echo Nest and Spotify have joined forces. In that time we’ve been working hard to build the best music platform for listeners and for developers. This week we are releasing some of the very first fruits of our labors.

First up, we are releasing a new Spotify Web API.

This is a complete revamp of the Spotify Metadata API (the old version has now been deprecated). The Spotify Web API gives you access to all sorts of information about the Spotify catalog including details about artists, albums and tracks. Want to know the top tracks for an artist? There’s an API for that. Looking for high quality album art, artist images and 30 second audio previews? There are APIs for that too. Best of all, the new API includes perhaps the most requested Spotify API feature of all time With the Spotify Web API you can now create and modify playlists on behalf of authenticated users. Yes – you can now create a Spotify web app that creates playlists. (I personally requested this feature way back in 2008, here’s my begging plea for the feature in 2009).

static_echonest_com_SpotifyPopcorn_I’ve been using the beta version of this new API for a couple months now and I must say I am quite impressed. The API is fast, super easy to use, and provides all sorts of great data for building apps. In the past weeks I’ve had fun converting a number of my favorite apps to use the Spotify API. First there’s the Road Trip Mix Tape that lets you create a Spotify playlist of music by artists that are from the very towns you are driving through. Then there’s Music Popcorn, a visual interface for exploring genres. For the less visual, there’s the Genre Browser that gives you lots of details about the different music genres including playlists that help give you a gentle introduction to any of the thousands of Echo Nest genres. Next there’s Boil the Frog, an app that creates seamless playlists between any two artists. Finally there’s the 3D Music Maze, an app that lets you explore for music by wandering through a 3 dimensional music world.

Next up, a freshly minted Echo Nest + Spotify Sandbox — a new Spotify ID space.

180px-Rosetta_Stone_BW.jpegThese apps are possible because of the second thing we are releasing this week – a spiffy, shiny new Spotify Rosetta Stone catalog that ensures that the Echo Nest API has the freshest, and most up-to-date view of the Spotify universe of music. For those who might be new to The Echo Nest, Project Rosetta Stone is something we’ve been working on here at the Nest for many years. The goal of Project Rosetta Stone is to solve one of the most common problems that nearly every music app developer faces. The problem is that every music service has its own set of IDs – a music subscription service like Spotify has its own artist, album and track IDs. A lyric service has its own (and very different) IDs for those same artists, albums and tracks and a concert ticketing API has yet a third set of IDs. This is quite problematic for app developers that want to build an app that combines information from multiple services. Without a common ID system, the app developer has to resort to metadata searching and matching – which is slow and quite error prone – this results in a poor app.

Project Rosetta Stone solves this problem by providing ID mappings between as many music services as we can. With this mapping you can easily translate IDs from one ID space to another. With Rosetta Stone, if you have the Spotify track ID you can get Lyricfind and/or Musixmatch IDs making it easy to use those respective APIs to retrieve lyrics for that song. You can easily map the Spotify artist ID to a Songkick or Eventful ID to get ticket and touring information from those APIs. And of course you can use the Spotify track ID to get detailed Echo Nest information about the song such as its tempo, energy, danceability, along with detailed Echo Nest artist data such as latest artist news, blog posts and similar artists.

We have had Spotify IDs in Rosetta Stone for many years, but this particular mapping has in the past been problematic for us. Spotify has a huge catalog and keeping the mapping fresh and up to date between Spotify and The Echo Nest has always been a big challenge. There’s a huge back catalog with millions of tracks to deal with plus thousands of new tracks are being added every week. The result was that there was always a bit of a lag between when updates to the Spotify catalog were reflected in the Rosetta Stone mapping. This meant that if you built a Rosetta Stone-based app you could find that The Echo Nest wouldn’t always know about a Spotify track, especially if a track was very new. The result would be a less-than-perfect app.

This week we are releasing a new Spotify ID space. Our engineers have been working hard over the last 100 days to set up all sorts of infrastructure and plumbing to ensure that we have the most up-to-date view of the Spotify catalog. No more lag between when a new track appears in Spotify and when you can get Echo Nest data. Plus, all of our APIs that take IDs as inputs will now also take Spotify IDs as input as well. If you have a Spotify artist ID you can use it with any Echo Nest artist API method. Likewise, if you have a Spotify track ID you can use it with any Echo Nest song or track API method that takes a track ID as input. This makes it **really** easy for developers to use The Echo Nest and Spotify Apps together. For example, here’s an API call that returns detailed audio properties for a Spotify track given its ID.

http://developer.echonest.com/api/v4/track/profile?api_key=FILDTEOIK2HBORODV&format=json&id=spotify:track:3L7BcXHCG8uT92viO6Tikl&bucket=audio_summary

I’ve been having much fun using The Echo Nest API with the brand new Spotify API. I’ve already written some code that you can use. First, I wrote a Python library for Spotify called Spotipy. It’s makes it easy to write Python programs that use the new Spotify Web API, and it works well with my Echo Nest Python library called Pyen. Here’s an example of using the two libraries together:

I’ve also put together a number of Javascript example apps that use both APIs. These are simple apps intended to help new developers (or at least new to music apps) use the APIs together to do common things like create chillout playlists, browse through the web of similar artists, and more.

So yes, I’m pretty jazzed about this trip to Barcelona. I get to create a music hack, I get to spend a few days with some of the best music hackers in the world (The Barcelona Music Hack Day, as part of the Sonar Festival tends to attract the top music hackers). I get to spend a few days on the Mediterranean in one of the most beautiful cities in the world. Best of all, I get to talk about the new Spotify and Echo Nest developer platform and help music hackers build cool stuff on top of the newly combined platform.

I’ve put together a page that talks in detail about the new Spotify / Echo Nest platform. It has links to all of the API docs, libraries, examples, github repos, demos and details on how you can use The Echo Nest / Spotify Platform. Check it out here:

The_Echo_Nest___Spotify_Developer

 

http://static.echonest.com/enspex

Keep an eye on this space for I’ll be updating it as we continue to integrate our developer APIs. There’s lots more coming, so stay tuned!

5 Comments

Bear core

Glenn has added a few fun genres to his Every Noise At Once map of the genre space. Check out the Bear genre which consists of bands with the word ‘bear’ in their name:

Every_Noise_at_Once

 


 

If you get tired of Bear then there is always the Horse genre which is made up of the many bands with Horse in their name (unfortunately, there is no Wyld Stallyns in the genre – seems to me that a fictional genre should have the greatest fictional band of all time):

Every_Noise_at_Once

Leave a comment

Minimizing my Karaoke pain

Rumor has it from some of the Echo Nest gang that went to Stockholm last week for new employee orientation that there is some sort of mandatory Karaoke requirement.  Now for some, I’m sure this is great fun, but for others, like myself, not so much.  I thought it would be best to prepare for my own mandatory Karaoke by finding some very short songs in order to minimize my time on stage.   To do this I went through  a database of the top Billboard songs of the last 60 years to find the shortest songs.   Here are some of the top shortest popular songs of the last 60 years:

Length(Seconds) Artist/Title Date
76 Anna Kendrick Cups 2013-01-14
78 Zac Efron What I’ve Been Looking For (Reprise) 2006-02-13
83 Buchanan & Goodman Santa And The Satellite (Part I) 1957-12-25
92 Audrey Dear Elvis (Page 1) 1956-09-24
96 Fats Domino Whole Lotta Loving 1958-11-19
98 Glee Cast Isn’t She Lovely 2011-05-30
99 Maurice Williams & The Zodiacs Stay 1960-10-05
101 Swinging Blue Jeans, The Hippy Hippy Shake 1964-03-09
103 Peter, Paul & Mary Settle Down (Goin’ Down That Highway) 1963-01-21
105 Four Tops Ain’t That Love 1965-08-02
105 Fats Domino Shu Rah 1961-03-22
105 Chuck Berry Let It Rock 1960-02-03
107 Lucas Gabreel & Ashley Tisdale Bop To The Top 2006-02-13
107 Beach Boys, The Little Deuce Coupe 1963-08-19
107 Clyde McPhatter Lover Please 1962-03-05
108 Ventures, The Hawaii Five-O 1969-03-10
110 Glee Cast Sing! 2010-11-01
110 Glee Cast It’s My Life / Confessions Part II 2009-10-26
110 Ricky Nelson If You Can’t Rock Me 1963-04-22

So it looks like my minimum possible karaoke pain will be 76 seconds if I go with Anna Kendrick’s Cups. Certainly better than Gun’s in Roses November Rain at 8:57 seconds or  Don Mclean’s American Pie at 6:49. But better yet, I can go with Hawaii Five-O . That song is not only short, but has no vocals.  With that song I’m sure to be pitch perfect!

,

6 Comments

10 Years of blogging

Ten years ago, May 3, 2004 I typed my very first blog post. At the time I was a researcher at Sun Microsystem’s Lab in the speech group working on speech synthesis and speech recognition systems, and so that was what I blogged about. Over the next year, my blog,  first called “Duke Speaks!” and then called “Duke Listens!”, (Duke is the name of the Java mascot) slowly morphed into a blog that was focused on music technology, and in particular, music information retrieval, music recommendation, music playlisting and discovery.  Five years later, when I left Sun to join The Echo Nest, I relaunched the blog as Music Machinery where I’ve been writing ever since.

I’ve written lots of blog posts. Some of my favorite from the Duke Listens! days are:

Some of my more popular posts from the Music Machinery days are:

I’m really looking forward to the next decade of blogging. Now that I work  for Spotify, there’s a seemingly unlimited supply of music data that will be prime blogging material. It will be great fun.

Thanks to you my reader, for stopping by, and  for all of your great comments, and feedback over the years.

2 Comments

The Skip

skipAt the time when I was coming of age musically, when we listened to music on LPs, the listening experience was very different than it is today. For one, if you didn’t like the currently playing song you had to get out of your chair, walk over to the turntable, carefully pick up the tone arm and advance the needle to the next track.  That was a lot of work to avoid three minutes of bad music. You really had to really dislike a song to make skipping it worth the effort. Today, with our fancy iPhones and our digital streaming music subscription services, skipping a song couldn’t be easier. Just tap a button and you are on to the next song.  The skip button is now a big part of the overall listening experience. Don’t like a song? Skip it. Never heard a song? Skip it. Just heard a song? Skip it. The Skip even plays a role in how we we pay for music. For most music subscription services if you want the freedom to skip a song whenever you want, you’ll need to be a premium subscriber, otherwise you’ll be limited to a half-dozen or so skips per hour.

I am interested in how people are using the skip button when listening to music so I spent a bit of time taking a closer look at skip data. This and the next blog post or two will be all about the skipping behavior of music listeners. We’ll take a look at how often people skip, whether different listener demographics have different skipping behavior, what artists and genres are most and least likely to trigger skips and more!

The Data
This is my first deep dive into Spotify data. The Spotify team has built up a fantastic big data infrastructure making it easy to extract insights from the billions and billions of music plays. For this study I’ve processed several billions of plays from many million unique listeners from all around the world.

What is a skip?
For this study, I define a skip as any time the listener abandons a song before the song finishes. It could be because the listener explicitly presses the skip button, or it could be that they searched for and started another song before the current song finished, or they clicked on a different song in the playlist. For whatever reason, if the listener doesn’t make it to the end of the song, I call it a skip.

How often do people skip?
The first and most basic question to answer is:  How often do people skip?. Given that skipping is so easy how big of a part does skipping play in our listening. The answer: A lot!  

Here are the numbers.  First, lets look at how often a song is skipped within the first five seconds of play.  I call these quick skips. The likelihood that a song will be skipped within the first five seconds is an astounding 24.14%. Nearly one quarter of all song plays are abandoned in the first 5 seconds. The likelihood that a song will be skipped within the first thirty seconds rises to 35.05%. The chance that a song is skipped before it ends is a whopping 48.6%. Yes, the odds are only slightly better than 50/50 that a song will be played all the way to the end.

Skipped in Likelihood of skip
First 5 seconds 24.14 %
First 10 seconds 28.97 %
First 30 seconds 35.05 %
Before song finishes 48.6 %

The following plot shows the average skipping behavior for millions of listeners and billions of plays. The plot shows the rather steep drop off in listeners in the early part of a song when most listeners are deciding whether or not to skip the song.  Then there’s a slow but steady decline in listeners until we reach the end of the song where only about 50% of the listeners remain.

all_songs

The next plot shows the average skipping behavior within in the first 60 seconds of a song. It shows that most of the song skips happen within the first 20 seconds or so of the song, and after that there’s a relatively small but steady skipping rate.

all_songs_detail

We can also calculate an overall skip rate per listener – that is, the average number of times a listener skips a song per hour.

Average listener/skips per hour:  14.65

On average a listener is skipping a song once every four minutes. That’s a whole lot of skipping.

Who is doing all that skipping?

Do different types of listeners skip music at different rates? Lets take a look.

By Gender

Skipping rate of male listeners:     44.75%
Skipping rate of female listeners:  45.23%

There seems to be little difference as to how often men and women skip.

By Platform:

Desktop skipping rate:   40.1%
Mobile skipping rate:      51.1%

When we are at our desktops, we tend to settle into longer listening sessions and skip less, while when we are mobile we spend much more time interacting with our music.

By age:

Skipping_behavior_by_age

This plot shows the skipping rate as a function of the age of the listener.  It shows that young teenagers have the highest skipping rate – well above 50%, but as the listener gets older their skipping rate drops rather dramatically, to reach the skipping nadir of about 35%.  Interestingly, the skipping rate rises again for people in their late 40s and early 50s.  I have a couple of theories about why this might be.  The first theory is that the skipping rate is a indication of how much free time a person has time. Teenagers skip more because they have more time to devote to editing their music stream, whereas thirty-somethings, with their little kids and demanding jobs, have no time to pay attention to  their music players.  The second theory, suggested by Spotify über-analyst Chris Tynan, is that the late-forties skipping resurgence is caused by teenagers that use their parent’s account.

When do people skip the most?

The following plot shows the skipping behavior over a 24 hour period.  To create the plot, I analyzed the listening behavior for UK residents (which are conveniently confined to a single timezone) over several weeks.

Skipping_behavior_by_hour_of_the_day

The plot shows that the skipping rate is lowest when people are paying less attention to music – like when they are asleep, or at work. Skipping behavior peaks in the morning hour as people start they day and start to head into work and again at the end of the day when they are at home or out socializing with their friends.  The plot shows the time of day when people tend to have the most attention to devote to hand-curating their music stream. When people are sleeping or working, their skip rate goes down.

In the next plot, below, the skipping rate is overlaid with normalized song plays.  It is interesting to see that the highest skipping rates do not coincide with the peak music playing times of the day, but instead is aligned with the times of day when rate of change in plays is the most.

Skipping_behavior_compared_to_song_plays_by_hour_of_the_day

 

Skipping behavior by Day of the Week

The following plot shows the average skipping rate per day of the week.  The skipping rate is higher on weekends, showing, once again, that when people have more spare time, they are more apt to curate their listening sessions by skipping tracks.

Skipping_behavior_by_day_of_the_week_and_2__ssh

Take away
The Skip really has changed how we listened to music.  It plays a significant role in how we interacts with our music stream. When we are more engaged with our music – we skip more, and when music is in the background such as when we are working or relaxing, we skip less. When we have more free time, such as when we are young, or on the weekends, or home after a day of work, we skip more. That’s when we have more time to pay attention to our music. The big surprise for me is how often we skip.  On average, we skip nearly every other song that we play.

Skipping has become an important part of how we listen to music.  It is no surprise then, that ‘unlimited skipping’ is a feature used to entice people to upgrade to a premium paid account. And it may be one of the reasons why people would switch from a service that doesn’t offer unlimited skips even on their premium service to one that does.

Coming soon: Look for my next post that will look at which genres, songs and artists get skipped the most and the least.

59 Comments

Follow

Get every new post delivered to your Inbox.

Join 1,004 other followers